An evolutionary algorithm with acceleration operator to generate a subset of typical testors

نویسندگان

  • Guillermo Sánchez-Díaz
  • German Diaz-Sanchez
  • Miguel Mora-González
  • Iván Piza-Dávila
  • Carlos Aguirre-Salado
  • Guillermo Huerta-Cuéllar
  • Oscar Reyes-Cardenas
  • Abraham Cardenas-Tristan
چکیده

This paper is focused on introducing a hill-climbing algorithm as a way to solve the problem of generating typical testors -or non-reducible descriptorsfrom a training matrix. All the algorithms reported in the state-of-the-art have exponential complexity. However, there are problems for which there is no need to generate the whole set of typical testors, but it suffices to find only a subset of them. For this reason, we introduce a hill-climbing algorithm that incorporates an acceleration operation at the mutation step, providing a more efficient exploration of the search space. The experiments have shown that, under the same circumstances, the proposed algorithm performs better than other related algorithms reported so far.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Implementation for the Typical Testor Property Identification Based on an Accumulative Binary Tuple

In this paper, we introduce a fast implementation of the CT EXT algorithm for testor property identification, that is based on an accumulative binary tuple. The fast implementation of the CT EXT algorithm (one of the fastest algorithms reported), is designed to generate all the typical testors from a training matrix, requiring a reduced number of operations. Experimental results using this fast...

متن کامل

Solving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm

The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...

متن کامل

Feature Selection Using Typical Testors Applied to Estimation of Stellar Parameters

In this paper a comparative analysis of feature selection using typical testors applied on astronomical data, is presented. The comparison is based on the classification efficiency using typical testors as feature selection method against the classification efficiency using Ramirez (2001) method, which uses genetic algorithms. The well-known K-nearest neighbors rule (KNN) was used as classifier...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

A Continuous Plane Model to Machine Layout Problems Considering Pick-Up and Drop-Off Points: An Evolutionary Algorithm

One of the well-known evolutionary algorithms inspired by biological evolution is genetic algorithm (GA) that is employed as a robust and global optimization tool to search for the best or near-optimal solution with the search space. In this paper, this algorithm is used to solve unequalsized machines (or intra-cell) layout problems considering pick-up and drop-off (input/output) points. Such p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2014